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(3) REPORT OF INVENTIONS (BY TITLE ONLY): 

(4) SCIENTIFIC PROGRESS AND ACCOMPLISHMENTS - Describe research Progress and 
accomplishments, including significant theoretical or experimental advances. 

ACOMPLISHMENTS: 
The research achievements covered here are for the duration of the award. 
The goal was to investigate the physics and applications of "cascading" effects which involve periodic 

power and phase exchange with distance between beams interacting via second order nonlinearities. 
Specifically, when a beam of frequency w traverses a nonlinear (second order) material, both its amplitude and 
phase are modified in a power-dependent way (and some second harmonic is generated [SHG]). The effects 
we explored can be separated into effects connected primarily with the nonlinear phase shift, and the nonlinearly 
modified amplitude which leads to spatial solitary waves. 

Nonlinear Phase Shift Phenomena: 

(a) We had previously shown that large nonlinear phase shifts could be achieved with at most 10% 
fundamental loss to SHG in LiNb03 channel waveguides using mode conversion [TE00(o))-TM00(2co)] for 
phase-matching at 360°C at 1320 nm. The key was that the temperature profile of the oven and hence the 
wavevector mismatch with position was not uniform in a special way. We have now used this phenomenon to 
demonstrate all-optical switching in a nonlinear directional coupler, nonlinear mode mixer and a nonlinear 
Mach-Zehder for the first time. This is a significant achievement because (i) these are very sophisticated 
switching devices known, and (ii) because in the case of the nonlinear directional coupler, it has two input and 
two output ports, allowing a large variety of all-optical operations. All-optical switching was observed based 
on cascading with a contrast ratio approaching 5:1 and 80% throughput. It is now clear that any all-optical 
device may be implemented with cascading nonlinearities. 
(b) The application of cascading to frequency shifting of 1.5 5 urn signals for wavelength division multiplexed 
(WDM) systems in the erbium amplifier wavelength window. The concept is as follows: first a pump signal (cop) 
in the erbium amplifier window is doubled. In the same waveguide, the doubled signal then acts as the pump for 
difference frequency mixing with an input signal (<Oj = o)p±Ao) in the erbium window which produces an output 
signal at o)0=(opT Aw. By choosing op appropriately, frequency shifting anywhere within the erbium amplifier 
window can be implemented. Calculations show that the 3 dB bandwidth of this caascading process covers the 
full erbium spectral window (±40nm) and frequency shifted signals down by 10 dB from the input signal are 
feasible with pump laser powers of a few hundred milliwatts in QPM LiNb03 channel waveguides. The signals 
have just been observed in a crude experiment utilizing an erbium fiber laser (input signal) and a color center 
laser (pump).   The advantage of this WDM frequency shifting scheme is that only lasers operating in the 
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communications band are used, there is no mode-matching requirement which occurs when only difference 
frequency mixing is used (by other researchers), the doubled frequency signal can be eliminated in a novel 
double pass geometry and that the power requirements can be met with existing semiconductor or fiber lasers. 
(c) We also investigated QPM channel waveguides at 1600 nm in collaboration with Dan Ostrowsky's group 
in Nice. The waveguides which are single mode at 1600 nm can support a number of modes at the harmonic. 
We found that the nonlinear phase shift produced for one of the harmonic modes which was near its phase- 
matching condition could detune another harmonic mode, phase-matched at low input powers, away from its 
phase matching for increasing input power. That is, the two modes would compete for the fundamental power 
as the input power was increased. The resulting mutual detuning led to an apparent saturation of the SHG 
process, and may be the origin of the apparent "saturation of SHG" reported by many authors in waveguides. 
(d) Also in the "Nice" QPM waveguides we have observed a very interesting, initially unexpected effect 
which has been identified as spatial non-reciprocity in non-centrosymmetric media. By coating photoresist onto 
a channel waveguide over part of its length, we found that the second harmonic conversion efficiency depended 
upon which end of the waveguide was used as the input, the overcoated end or the uncoated end. Prior to the film 
deposition the SHG did not depend on the input direction. We now understand this effect as being due to a 
phase-mismatch for SHG which is not symmetrical about the middle of the sample. The conditions for "seeding" 
the SHG process when entering from coated to uncoated regions, and vice versa, is different for the two cases 
and hence the final SHG output is different. Modeling confirmed the observed effect and its origin. This 
phenomenon could find application to an optical diode. 

Spatial Quadratic Soliton Phenomena: 
We had previously reported the observation of strongly coupled fundamental and harmonic beams which 

propagate without spatial diffraction in two dimensions, i.e. in bulk second order media. This is completely new 
physics which we have been exploring both theoretically and experimentally in one (slab waveguides) and two 
dimensions (bulk crystals). 
(e) The process by which quadratic solitons are generated in bulk media, solitary-wave locking, can be used 
to change and control the propagation direction of beams inside a SHG-active crystal for which one or more of 
the interacting beams experiences walk-off at low powers. We demonstrated this effect previously by using a 
seed second harmonic with a specific phase. We have now verified experimentally that the same effect can be 
implemented in Type II SHG by "tuning the relative intensity of the two input fundamental beams. This is 
important because the relative phase of the two inputs is irrelevant and hence the process is phase-independent. 
By varying the relative intensity the direction of the beam can be tuned smoothly from one direction to another. 
By placing apertures at the two directions, all-optical switching was observed with less than a 10% change in the 
input intensity. This constitutes a totally different approach to all-optical switching, logic etc. 
(f) A new family of bulk quadratic solitons has been discovered in Type II phase-matched interactions. 
Solitons with different ratios (from those obtained in SHG) of the second harmonic, the o-polarized fundamental 
and the e-polarized fundamental were observed. In fact, these ratios can be tuned continuously by changing the 
input polarization. The key result is that a quadratic soliton can be launched with primarily one fundamental 
polarization. This means that a soliton can be formed with a strong pump beam and a weak signal beam, and 
that the weak signal beam can be guided by the strong pump beam as a quadratic soliton. The direction of the 
strong pump can in principle be controlled electro-optically because the materials which support quadratic 
solitons are also electro-optic active. This has applications to reconfigurable interconnects. 
(g) These bulk quadratic solitons have many properties in common with the well-understood spatial solitons 
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based on Kerr third order nonlinearities. One of these is the "robustness" of the solitary waves. Thus input 
beams of sufficient intensity will evolve adiabatically with distance into spatial solitary waves. The preliminary 
observation was introduced in the 1995 report. This effect has now been explored thoroughly and then "verified" 
by beam propagation calculations. Experimentally, elliptical beams with different majonminor axes ratios, up 
to 12:1, were launched into the doubling crystal KTP. We have now extended our previously reported 
preliminary results to show that in each case the output was transformed into a perfectly cylindrically symmetric 
output beam. The threshold values versus ellipticity have been measured and good agreement with theory found. 
This effect can be used to transform spatially noisy (spikes) or irregularly shaped outputs (for example, from 
linear semiconductor arrays) into circular beams. 
(h) An intriguing effect was reported previously in which the input intensity of the elliptical beam was high. 
The beam "broke up" into a line of cylindrically-shaped solitary waves. Up to 10 have now been observed. This 
effect has now been studied extensively and found to be a result of modulational instabilities in one dimension 
(along the major axis of the ellipse) of a beam in a quadratically nonlinear medium. Excellent agreement with 
a new theory was obtained. That beams break up in self-focusing media due to third order nonlinearities is well- 
known from the early days of nonlinear optics. This is the first observation of beam break-up in media used for 
SHG, tunable parametric generation devices (OPOs, OPGs etc.) and places limitations on such devices. In fact, 
it is highly likely that the beam filamentation and resulting damage observed in quadratically nonlinear media 
is due to cascading effects and not self- focusing due to third order nonlinearities. For very high intensities, 
break-up in the second dimension (along the minor ellipse axis) was also observed. These phenomena can be 
used to better design high power devices in quadratic media and to generate soliton patterns in one and two 
dimensions. 
(i) Quadratic soliton formation during parametric down-conversion has been discovered and a fascinating 
device possibility uncovered. A pump beam (at 2w) and a weak seed (at (o) have been observed to generate a 
quadratic soliton for Type II phase-matching. This corresponds to the degeneracy point of an OPO. Because 
of the well-known parametric instability, a photon from the pump beam breaks up into two fundamental photons 
via an exponential growth process. This process is controlled and limited by the formation of a quadratic soliton. 
For a given pump beam input, the output is clamped at a well-defined quadratic soliton, independent of the 
fundamentals amplitude, phase and polarization. Furthermore, the process has been verified to be only weakly 
dependent on beam overlap in space and time, in keeping with the its "seed" nature. This all-optical process 
provides up to 40 dB gain for the weak fundamental, and also clamps it's output at a fixed value (determined by 
the "power supply", i.e. the harmonic intensity: These characteristics are that of a robust amplifier-limiter 
device. 
(j) One dimensional quadratic solitary waves have been observed in LiNb03 slab waveguides based on Type 
I phase-matched SHG. When a fundamental beam (at 1320 nm) was launched into the slab waveguide, a ID 
quadratic soliton was formed and appeared at the output. Solitons were observed both near and far from phase- 
matching and the results were in excellent agreement with theory. This should make possible most of the 
phenomena that we observed in the 2D case, but with much lower power requirements. 
(k) The interaction between two 1D solitons launched in both a parallel and a crossing geometry has been 
investigated experimentally and numerically. The result of the interaction depends on the relative phase between 
the two launched fundamental beams. For parallel launching and phase angles of 0 and %, the solitons fuse and 
repel one another respectively. At TC/2 and 37i/2, the beams exchange power before separating. For crossing 
geometries, the behaviour was essentially the same for small incidence angles. However at larger angles, no 
fusion occurs but the attractive and repulsive forces for phase angles of 0 and % lead to different lateral 
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deflections of the output solitons. Furthermore the power exchange at other angles is reduced. This phenomenon 
has applications to beam combining and sets limitations on soliton crossing angles for applications such as 
optical interconnects. 

(5) TECHNOLOGY TRANSFER - Describe any specific interactions or developments which would 
constitute technology transfer of the research results. Examples include patents, initiation of a start-up company 
based on research results, interactions with industry/Army R&D Laboratories or transfer of information which 
might impact the development of products. 

"Applications of Solitary-Wave Locking in Second Order Parametric Processes", awarded 
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